Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

28Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum.Results: Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation.Conclusions: The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. © 2012 Peifer et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Peifer, S., Barduhn, T., Zimmet, S., Volmer, D. A., Heinzle, E., & Schneider, K. (2012). Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine. Microbial Cell Factories, 11. https://doi.org/10.1186/1475-2859-11-138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free