Overview of MR Image Segmentation Strategies in Neuromuscular Disorders

34Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

Neuromuscular disorders are rare diseases for which few therapeutic strategies currently exist. Assessment of therapeutic strategies efficiency is limited by the lack of biomarkers sensitive to the slow progression of neuromuscular diseases (NMD). Magnetic resonance imaging (MRI) has emerged as a tool of choice for the development of qualitative scores for the study of NMD. The recent emergence of quantitative MRI has enabled to provide quantitative biomarkers more sensitive to the evaluation of pathological changes in muscle tissue. However, in order to extract these biomarkers from specific regions of interest, muscle segmentation is mandatory. The time-consuming aspect of manual segmentation has limited the evaluation of these biomarkers on large cohorts. In recent years, several methods have been proposed to make the segmentation step automatic or semi-automatic. The purpose of this study was to review these methods and discuss their reliability, reproducibility, and limitations in the context of NMD. A particular attention has been paid to recent deep learning methods, as they have emerged as an effective method of image segmentation in many other clinical contexts.

Cite

CITATION STYLE

APA

Ogier, A. C., Hostin, M. A., Bellemare, M. E., & Bendahan, D. (2021, March 25). Overview of MR Image Segmentation Strategies in Neuromuscular Disorders. Frontiers in Neurology. Frontiers Media S.A. https://doi.org/10.3389/fneur.2021.625308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free