For the development of decentralized treatment systems for road runoff, the determination of pollutant removal capacities is essential. The aim of this study was to evaluate the impact of boundary conditions on the simultaneous removal of copper, nickel, and zinc by six sorbents used for urban stormwater treatment (i.e., granular activated alumina, anthracite, granular reactivated carbon, granular ferric hydroxide, calcium carbonate, and granular activated lignite). For batch experiments, capacities were determined at initial concentrations within the range of 2.5-180 mg/L with a rotary shaker. Further influences were investigated: The use of a horizontal shaker for concentrations of up to 1080 mg/L, a variation of the initial pH value (5 and 7), and the presence of a buffer. Furthermore, the influences of the filtration process on the capacities were studied. Kinetic experiments were conducted for contact times between 5 min and 120 min. Lab-scale column experiments with inflow concentrations of 2.5 mg/L (copper and nickel) and 5.0 mg/L (zinc) at an initial pH of 5 and a contact time of 11 min were performed for comparison. Selected experiments were subsequently carried out with changes in initial concentrations and contact time. One result is that it is essential to conduct batch experiments with the metals of interest. The capacities determined by column experiments deviated from batch experiments. Batch experiments under well-defined conditions can be used to evaluate different production batches. Column experiments give a more faithful capacity by considering realistic boundary conditions and should be preferred to determine efficiencies and service lives.
CITATION STYLE
Huber, M., Badenberg, S. C., Wulff, M., Drewes, J. E., & Helmreich, B. (2016). Evaluation of factors influencing lab-scale studies to determine heavy metal removal by six sorbents for stormwater treatment. Water (Switzerland), 8(2). https://doi.org/10.3390/w8020062
Mendeley helps you to discover research relevant for your work.