Protein translocation across the peroxisomal membrane requires the concerted action of numerous peroxins. One central component of this machinery is Pex5p, the cycling receptor for matrix proteins. Pex5p recognizes newly synthesized proteins in the cytosol and promotes their translocation across the peroxisomal membrane. After this translocation step, Pex5p is recycled back into the cytosol to start a new protein transport cycle. Here, we show that mammalian Pex5p is ubiquitinated at the peroxisomal membrane. Two different types of ubiquitination were detected, one of which is thiol-sensitive, involves Cys11 of Pex5p, and is necessary for the export of the receptor back into the cytosol. Together with mechanistic data recently described for yeast Pex5p, these findings provide strong evidence for the existence of Pex4p- and Pex22p-like proteins in mammals. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Carvalho, A. F., Pinto, M. P., Grou, C. P., Alencastre, I. S., Fransen, M., Sá-Miranda, C., & Azevedo, J. E. (2007). Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. Journal of Biological Chemistry, 282(43), 31267–31272. https://doi.org/10.1074/jbc.M706325200
Mendeley helps you to discover research relevant for your work.