Background Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. Methodology Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. Conclusions These T cell and antibody responses support our approach of using reagents from RASimmunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates.
CITATION STYLE
Aguiar, J. C., Bolton, J., Wanga, J., Sacci, J. B., Iriko, H., Mazeika, J. K., … Richie, T. L. (2015). Discovery of novel plasmodium falciparum pre-erythrocytic antigens for vaccine development. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136109
Mendeley helps you to discover research relevant for your work.