Ammonia–methane combustion in tangential swirl burners for gas turbine power generation

Citations of this article
Mendeley users who have this article in their library.


Ammonia has been proposed as a potential energy storage medium in the transition towards a low-carbon economy. This paper details experimental results and numerical calculations obtained to progress towards optimisation of fuel injection and fluidic stabilisation in swirl burners with ammonia as the primary fuel. A generic tangential swirl burner has been employed to determine flame stability and emissions produced at different equivalence ratios using ammonia–methane blends. Experiments were performed under atmospheric and medium pressurised conditions using gas analysis and chemiluminescence to quantify emission concentrations and OH production zones respectively. Numerical calculations using GASEQ and CHEMKIN-PRO were performed to complement, compare with and extend experimental findings, hence improving understanding concerning the evolution of species when fuelling on ammonia blends. It is concluded that a fully premixed injection strategy is not appropriate for optimised ammonia combustion and that high flame instabilities can be produced at medium swirl numbers, hence necessitating lower swirl and a different injection strategy for optimised power generation utilising ammonia fuel blends.

Author supplied keywords




Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T., & Bowen, P. (2017). Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Applied Energy, 185, 1362–1371.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free