Approximate hierarchical facility location and applications to the bounded depth Steiner tree and range assignment problems

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The paper concerns a new variant of the hierarchical facility location problem on metric powers (HFLβ [h]), which is a multi-level uncapacitated facility location problem defined as follows. The input consists of a set F of locations that may open a facility, subsets D1, D2, ..., Dh - 1 of locations that may open an intermediate transmission station and a set Dh of locations of clients. Each client in Dh must be serviced by an open transmission station in Dh - 1 and every open transmission station in Dl must be serviced by an open transmission station on the next lower level, Dl - 1. An open transmission station on the first level, D1 must be serviced by an open facility. The cost of assigning a station j on level l ≥ 1 to a station i on level l - 1 is ci j. For i ∈ F, the cost of opening a facility at location i is fi ≥ 0. It is required to find a feasible assignment that minimizes the total cost. A constant ratio approximation algorithm is established for this problem. This algorithm is then used to develop constant ratio approximation algorithms for the bounded depth Steiner tree problem and the bounded hop strong-connectivity range assignment problem. © 2009 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Kantor, E., & Peleg, D. (2009). Approximate hierarchical facility location and applications to the bounded depth Steiner tree and range assignment problems. Journal of Discrete Algorithms, 7(3), 341–362. https://doi.org/10.1016/j.jda.2008.11.006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free