Preparation of poly(3-hydroxybutyrate-b-∈-caprolactone) by reactive extrusion and production of electrospun fibrous mats

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Poly(3-hydroxybutyrate) (PHB) has been proposed to be a potential candidate to be used as biomaterial. However, its poor processability, high brittleness and rigidity have limited its applicability. Transesterification reactions with poly(Σ-caprolactone) (PCL), one of the most promising biomedical materials, emerge as an attractive alternative to improve its mechanical properties. In this work, poly(3-hydroxybutyrate-b-Σ-caprolactone) (PHB-b-PCL) was prepared straightforwardly by transesterification of the parent homopolymers by reactive extrusion in the presence of stannous octanoate. After purification by solvent fractionation, PHB-b-PCL was characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy of carbon (13C NMR) and hydrogen (1H NMR) and, subsequently, submitted to electrospinning. The results indicate that PHB was modified, showing lower crystallinity as compared to the original homopolymers. The electrospun mats are tough and flexible and analysis by scanning electron microscopy indicates the formation of uniformly smooth morphology with average fiber diameter of 900-1200 nm and voids in the range between a few microns up to a few tens of microns, suitable for cell diffusion in biomedical applications.

Cite

CITATION STYLE

APA

Sakaguti, K. Y., & Wang, S. H. (2021). Preparation of poly(3-hydroxybutyrate-b-∈-caprolactone) by reactive extrusion and production of electrospun fibrous mats. Journal of the Brazilian Chemical Society, 32(2), 355–362. https://doi.org/10.21577/0103-5053.20200186

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free