Extensive crystal fractionation of high-silica magmas revealed by K isotopes

28Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fractional crystallization plays a critical role in generating the differentiated continental crust on Earth. However, whether efficient crystal-melt separation can occur in viscous felsic magmas remains a long-standing debate because of the difficulty in discriminating between differentiated melts and complementary cumulates. Here, we found large (~1 per mil) potassium isotopic variation in 54 strongly peraluminous high-silica (silicon dioxide >70 weight %) leucogranites from the Himalayan orogen, with potassium isotopes correlated with trace elemental proxies (e.g., strontium, rubidium/strontium, and europium anomaly) for plagioclase crystallization. Quantitative modeling requires up to ~60 to 90% fractional crystallization to account for the progressively light potassium isotopic composition of the fractionated leucogranites, while plagioclase accumulation results in enrichment of heavy potassium isotopes in cumulate leucogranites. Our findings strongly support fractional crystallization of high-silica magmas and highlight the great potential of potassium isotopes in studying felsic magma differentiation.

Cite

CITATION STYLE

APA

Wang, Z. Z., Teng, F. Z., Wu, F. Y., Liu, Z. C., Liu, X. C., Liu, S. A., & Huang, T. Y. (2022). Extensive crystal fractionation of high-silica magmas revealed by K isotopes. Science Advances, 8(47). https://doi.org/10.1126/sciadv.abo4492

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free