X-ray diffraction is a technique to study the structure of materials at spatial resolutions up to an atomic scale. In the field of life science, the X-ray diffraction technique is especially suited to study materials having periodical structures, such as protein crystals, nucleic acids, and muscle. Among others, muscle is a dynamic structure and the molecular events occurring during muscle contraction have been the main interest among muscle researchers. In early days, the laboratory X-ray generators were unable to deliver X-ray flux strong enough to resolve the dynamic molecular events in muscle. This situation has dramatically been changed by the advent of intense synchrotron radiation X-rays and advanced detectors, and today X-ray diffraction patterns can be recorded from muscle at sub-millisecond time resolutions. In this review, we shed light mainly on the technical aspects of the history and the current status of the X-ray diffraction studies on muscle and discuss what will be made possible for muscle studies by the advance of new techniques.
CITATION STYLE
Iwamoto, H. (2019, August 1). Synchrotron radiation X-ray diffraction studies on muscle: past, present, and future. Biophysical Reviews. Springer Verlag. https://doi.org/10.1007/s12551-019-00554-x
Mendeley helps you to discover research relevant for your work.