In the intermittent machining of hardened steel for the die and mold industry, determining how to reduce the wear of PCBN (Polycrystalline Cubic Boron Nitride) tools and improve their machining efficiency and quality is an important subject. This study investigated the intermittent machining of hardened steel (Cr12MoV, 59HRC (Rockwell hardness)) using uncoated PCBN tools to determine the cutting performance (cutting force, chip morphology, surface quality, tool life, cutting temperature) and the wear/damage characteristics of the tools. The results showed that the cutting performance of a PCBN tool was better than that of a cemented carbide tool. The wear mechanism on the PCBN tool flank was diffusion wear, adhesive wear, and oxidation wear. The main failure modes of the PCBN tool in the machining process of hardened steel at low speed were tool micro-chipping, the conchoidal damage of the rake face, and the larger damaged area of the flank face. The main failure modes of the PCBN tool in the machining process of hardened steel at high speed were flank wear and high-rate fatigue damage.
CITATION STYLE
Gao, H., Liu, X., & Chen, Z. (2019). Cutting performance and wear/damage characteristics of PCBN tool in hard milling. Applied Sciences (Switzerland), 9(4). https://doi.org/10.3390/app9040772
Mendeley helps you to discover research relevant for your work.