Ruthenium-doped H-Montmorillonite (H-Mont) and Ti-pillared clay (Ti-PILC) were prepared then studied for oxidation of cyclohexene, with tert-butylhydroperoxide (TBHP) as the oxygen source. The Ti-PILC support was prepared by hydrolysis of Ti(OC3H7)4 with HCl. The synthesized Ru/Ti-PILC and Ru/H-Mont catalysts were characterized by chemical analysis, surface area/pore volume measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), and UV-vis-diffuse reflectance spectroscopy (UV-vis-DRS). Both catalysts can selectively oxidize cyclohexene through allylic oxidation to give 2-cyclohexene-1-one as the major product, and 2-cyclohexene-1-ol as the minor product. The influence of reaction time, temperature, catalyst amount, and substrate/oxidant ratio was also investigated to find the optimal reaction for cyclohexene oxidation to get the highest conversion. Indeed, when 5% Ru/Ti-PILC was employed as catalyst, 59% cyclohexene conversion, 87% selectivity for 2-cyclohexene-1-one and 13% selectivity for 2-cyclohexene-1-ol were obtained under ambient pressure, at 70 °C, for a 6 h reaction time. The catalysts were reused in four consecutive runs.
CITATION STYLE
Mukasa-Tebandeke, I. Z., Ssebuwufu, P. J. M., Nyanzi, S. A., Schumann, A., Nyakairu, G. W. A., Ntale, M., & Lugolobi, F. (2015). The Elemental, Mineralogical, IR, DTA and XRD Analyses Characterized Clays and Clay Minerals of Central and Eastern Uganda. Advances in Materials Physics and Chemistry, 05(02), 67–86. https://doi.org/10.4236/ampc.2015.52010
Mendeley helps you to discover research relevant for your work.