Bone marrow stromal cells (BMSCs) reside in bone marrow and provide a lifelong source of new cells for various connective tissues. Although human BMSCs are regarded as highly suitable for the development of cell therapeutics and regenerative medicine, the molecular factors and the networks of signaling pathways responsible for their biological properties are as yet unclear. To gain a comprehensive understanding of human BMSCs at the transcriptional level, we have performed DNA microarray-based, genome-wide differential gene expression analysis with the use of peripheral blood-derived mononuclear cells (MNCs) as a baseline. The resulting molecular profile of BMSCs was revealed to share no meaningful overlap with those of other human stem cell types, suggesting that the cells might express a unique set of genes for their stemness. By contrast, the distinct molecular signature, consisting of 92 different genes whose expression strengths are at least 50-fold higher in BMSCs compared with MNCs, was shown to encompass largely a gene subset of umbilical cord blood-derived adherent cells, suggesting that adherent cells derived from bone marrow and umbilical cord blood may be defined by a common set of genes, regardless of their origin. Intriguingly, a large number of these genes, particularly ones for extracellular matrix products, coincide with normal or tumor endothelium-specific markers. Taken together, our results here provide a BMSC-specific genetic catalog that may facilitate future studies on molecular mechanisms governing core properties of these cells.Disclosure of potential conflicts of interest is found at the end of this article.
CITATION STYLE
Jeong, J. A., Ko, K.-M., Bae, S., Jeon, C.-J., Koh, G. Y., & Kim, H. (2007). Genome-Wide Differential Gene Expression Profiling of Human Bone Marrow Stromal Cells. Stem Cells, 25(4), 994–1002. https://doi.org/10.1634/stemcells.2006-0604
Mendeley helps you to discover research relevant for your work.