For certain correlated electron-photon systems we construct the exact density-to-potential maps, which are the basic ingredients of a density-functional reformulation of coupled matter-photon problems. We do so for numerically exactly solvable models consisting of up to four fermionic sites coupled to a single photon mode. We show that the recently introduced concept of the intra-system steepening (Dimitrov et al 2016 New J. Phys. 18 083004) can be generalized to coupled fermion-boson systems and that the intra-system steepening indicates strong exchange-correlation effects due to the coupling between electrons and photons. The reliability of the mean-field approximation to the electron-photon interaction is investigated and its failure in the strong coupling regime analyzed. We highlight how the intra-system steepening of the exact density-to-potential maps becomes apparent also in observables such as the photon number or the polarizability of the electronic subsystem. We finally show that a change in functional variables can make these observables behave more smoothly and exemplify that the density-to-potential maps can give us physical insights into the behavior of coupled electron-photon systems by identifying a very large polarizability due to ultra-strong electron-photon coupling.
CITATION STYLE
Dimitrov, T., Flick, J., Ruggenthaler, M., & Rubio, A. (2017). Exact functionals for correlated electron-photon systems. New Journal of Physics, 19(11). https://doi.org/10.1088/1367-2630/aa8f09
Mendeley helps you to discover research relevant for your work.