The process of selecting the appropriate meaning of an ambigous word according to its context is known as word sense disambiguation. In this research, we generate a number of Arabic sense inventories based on an unsupervised approach and different pre-trained embeddings, such as Aravec, Fasttext, and Arabic-News embeddings. The resulted inventories from the pre-trained embeddings are evaluated to investigate their efficiency in Arabic word sense disambiguation and sentence similarity. The sense inventories are generated using an unsupervised approach that is based on a graph-based word sense inductionalgorithm. Results show that the Aravec-Twitter inventory achieves the best accuracy of 0.47 for 50 neighbors and a close accuracy to the Fasttext inventory for 200 neighbors while it provides similar accuracy to the Arabic-News inventory for 100neighbors. The experiment of replacing ambiguous words with their sense vectors is tested for sentence similarity using all sense inventories and the results show that using Aravec-Twitter sense inventoryprovides a better correlation value.
CITATION STYLE
Alian, M., & Awajan, A. (2021). Generating sense inventories for ambiguous arabic words. International Arab Journal of Information Technology, 18(Special issue 3A), 446–451. https://doi.org/10.34028/iajit/18/3A/8
Mendeley helps you to discover research relevant for your work.