Prediction of top tourist attraction spots using learning algorithms

2Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Dealing with the growing amount of user posted content like preferences, responses, comments, past experiences and beliefs spread through social media is a vital but challenging task. Being applied in several domains, recommender systems are used to find solutions and suggestions based on users interests including tourism-related opinion detection and tourist-attraction spot identification. Tourists can access and analyze this information for making decisions and predicting best tourist places. This study aims to predict tourist attraction spots and their related information by analyzing the data from social media (Facebook, Twitter etc.) which in turns help the tourist industry by deliberating what kind of attractions tourists can have and how to obtain their preferences. For this purpose four algorithms such as Kernel Density Estimation, K-Nearest Neighbor, Random forest and XG Boost have been used. The findings revealed that XG Boost yields better results in terms of accuracy than other three algorithms.

Cite

CITATION STYLE

APA

Gupta, S., Jenila Livingston, L. M., & Agnel Livingston, L. G. X. (2019). Prediction of top tourist attraction spots using learning algorithms. International Journal of Recent Technology and Engineering, 8(3), 1063–1067. https://doi.org/10.35940/ijrte.C4241.098319

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free