Repeated exposure to cocaine results in motor sensitization that, in the ventral tegmental area (VTA), is associated to enhanced glutamate release, which in turn leads to enhanced calcium levels in dopaminergic neurons. Calcium influx activates calcium-calmodulin-dependent protein kinases such as CaMKII. D-Serine could participate on these effects, and the objective was to discern the role of VTA D-serine after a sensitizing regimen of cocaine (10 mg/kg daily), and to discern consequent expression changes in CaMKII and its activated form. For this purpose, D-serine, sodium benzoate (inhibitor of D-amino acid oxidase, the degradating enzyme of D-serine), and 7-chlorokynurenate (inhibitor of the glycine site of NMDA receptors) were injected into the VTA (in either the induction or expression phase of sensitization), and activation state of CaMKII was assessed through blotting. The findings indicated that intra-VTA administration of D-serine (5 mM) and sodium benzoate (100 and 200 μg/μl) during the induction phase (not expression) reliably augmented the expression of behavioral sensitization to cocaine, providing evidence that D-serine in the VTA participates in the initiation of motor sensitization to this psychostimulant drug. Intra-VTA infusions of D-serine, sodium benzoate and 7-chlorokynurenate did not elicit a motor effect of their own. Confirming the important role of NMDA receptors and their activation at the glycine site, the employment of 7-chlorokynurenate (2 and 5 μg/μl) led to blocking of the development of sensitization to cocaine. CaMKII within the VTA was found to participate in D-serine's effects because this kinase, that is activated after repeated cocaine, was further activated after co-treatment with D-serine or sodium benzoate. Besides CaMKII activity was otherwise reduced by 7-chlorokynurenate. © 2008 Nature Publishing Group All rights reserved.
CITATION STYLE
Fernandez-Espejo, E., Ramiro-Fuentes, S., Portavella, M., & Moreno-Paublete, R. (2008). Role for D-serine within the ventral tegmental area in the development of cocaine’s sensitization. Neuropsychopharmacology, 33(5), 995–1003. https://doi.org/10.1038/sj.npp.1301495
Mendeley helps you to discover research relevant for your work.