BiSHM: Evidence detection and preservation model for cloud forensics

1Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

The cloud market is growing every day. So are cloud crimes. To investigate crimes that happen in a cloud environment, an investigation is carried out adhering to the court of law. Forensics investigations require evidence from the cloud. Evidence acquisition in the cloud requires formidable efforts because of physical inaccessibility and the lack of cloud forensics tools. Time is very crucial in any forensic investigation. If the evidence is preserved before the cloud forensic investigation, it can give the investigators a head start. To identify and preserve such potential evidence in the cloud, we propose a system with an artificial intelligence (AI)-based agent, equipped for binary classification that monitors and profiles the virtual machine (VM) from hypervisor level activities. The proposed system classifies and preserves evidence data generated in the cloud. The evidence repository module of the system uses a novel blockchain model approach to maintain the data provenance. The proposed system works at the hypervisor level, which makes it robust for anti-forensics techniques in the cloud. The proposed system identifies potential evidence reducing the effective storage space requirement of the evidence repository. Data provenance incorporated in the proposed system reduces trust dependencies on the cloud service provider (CSP).

Cite

CITATION STYLE

APA

Purnaye, P., & Kulkarni, V. (2022). BiSHM: Evidence detection and preservation model for cloud forensics. Open Computer Science, 12(1), 154–170. https://doi.org/10.1515/comp-2022-0241

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free