We have developed a machine-learning approach to identify 3537 discrete orthologue protein sequence groups distributed across all available archaeal genomes. We show that treating these orthologue groups as binary detection/non-detection data is sufficient to capture the majority of archaeal phylogeny. We subsequently use the sequence data from these groups to infer a method and substitution-modelindependent phylogeny. By holding this phylogeny constrained and interrogating the intersection of this large dataset with both the Eukarya and the Bacteria using Bayesian and maximum-likelihood approaches, we propose and provide evidence for a methanogenic origin of the Archaea. By the same criteria, we also provide evidence in support of an origin for Eukarya either within or as sisters to the Thaumarchaea. © 2010 The Royal Society.
CITATION STYLE
Kelly, S., Wickstead, B., & Gull, K. (2011). Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proceedings of the Royal Society B: Biological Sciences, 278(1708), 1009–1018. https://doi.org/10.1098/rspb.2010.1427
Mendeley helps you to discover research relevant for your work.