Deep learning based instance segmentation of titanium dioxide particles in the form of agglomerates in scanning electron microscopy

36Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

The size characterization of particles present in the form of agglomerates in images measured by scanning electron microscopy (SEM) requires a powerful image segmentation tool in order to properly define the boundaries of each particle. In this work, we propose to use an algorithm from the deep statistical learning community, the Mask-RCNN, coupled with transfer learning to overcome the problem of generalization of the commonly used image processing methods such as watershed or active contour. Indeed, the adjustment of the parameters of these algorithms is almost systematically necessary and slows down the automation of the processing chain. The Mask-RCNN is adapted here to the case study and we present results obtained on titanium dioxide samples (non-spherical particles) with a level of performance evaluated by different metrics such as the DICE coefficient, which reaches an average value of 0.95 on the test images.

Cite

CITATION STYLE

APA

Monchot, P., Coquelin, L., Guerroudj, K., Feltin, N., Delvallée, A., Crouzier, L., & Fischer, N. (2021). Deep learning based instance segmentation of titanium dioxide particles in the form of agglomerates in scanning electron microscopy. Nanomaterials, 11(4). https://doi.org/10.3390/nano11040968

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free