Neutron Imaging (NI) has been developed in the last decades from a film-based inspection method for non-destructive observations towards a powerful research tool with many new and competitive methods. The most important technical step forward has been the introduction and optimization of digital imaging detection systems. In this way, direct quantification of the transmission process became possible—the basis for all advanced methods like tomography, phase-contrast imaging and neutron microscopy. Neutron imaging facilities need to be installed at powerful neutron sources (reactors, spallation sources, other accelerator driven systems). High neutron intensity can be used best for either highest spatial, temporal resolution or best image quality. Since the number of such strong sources is decreasing world-wide due to the age of the reactors, the number of NI facilities is limited. There are a few installations with pioneering new concepts and versatile options on the one hand, but also relatively new sources with only limited performance thus far. It will be a challenge to couple the two parts of the community with the aim to install state-of-the-art equipment at the suitable beam ports and develop NI further towards a general research tool. In addition, sources with lower intensity should be equipped with modern installations in order to perform practical work best.
CITATION STYLE
Lehmann, E. H. (2017, December 1). Neutron imaging facilities in a global context. Journal of Imaging. MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/jimaging3040052
Mendeley helps you to discover research relevant for your work.