On the Machine Learning of Ethical Judgments from Natural Language

30Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to address ethical issues of harmful outcomes in machine learning systems that are made to interface with humans. One recent approach in this vein is the construction of NLP morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we offer a critique of such NLP methods for automating ethical decision-making. Through an audit of recent work on computational approaches for predicting morality, we examine the broader issues that arise from such efforts. We conclude with a discussion of how machine ethics could usefully proceed in NLP, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.

Cite

CITATION STYLE

APA

Talat, Z., Blix, H., Valvoda, J., Ganesh, M. I., Cotterell, R., & Williams, A. (2022). On the Machine Learning of Ethical Judgments from Natural Language. In NAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference (pp. 769–779). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.naacl-main.56

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free