A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin

89Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The specific post-translational modifications of the histone proteins are associated with specific DNA-templated processes, such as transcriptional activation or repression. To investigate the biological role(s) of histone H4 lysine 20 (H4 Lys-20) methylation, we created a novel panel of antibodies that specifically detected mono-, di-, or trimethylated H4 Lys-20. We report that the different methylated forms of H4 Lys-20 are compartmentalized within visually distinct, transcriptionally silent regions in the mammalian nucleus. Interestingly, direct comparison of methylated H4 Lys-20 with the different methylated states of histone H3 lysine 9 (H3 Lys-9) revealed significant overlap and exclusion between the specific groups of methyl modifications. Trimethylated H4 Lys-20 and H3 Lys-9 were both selectively enriched within pericentric heterochromatin. Similarly, monomethylated H4 Lys-20 and H3 Lys-9 partitioned together and the dimethylated forms partitioned together within the chromosome arms; however, the mono- and dimethylated modifications were virtually exclusive. These findings strongly suggest that the combinatorial presence or absence of the different methylated states of H4 Lys-20 and H3 Lys-9 define particular types of silent chromatin. Consistent with this, detailed analysis of monomethylated H4 Lys-20 and H3 Lys-9 revealed that both were preferentially and selectively enriched within the same nucleosome particle in vivo. Collectively, these findings define a novel trans-tail histone code involving monomethylated H4 Lys-20 and H3 Lys-9 that act cooperatively to mark distinct regions of silent chromatin within the mammalian epigenome. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Sims, J. K., Houston, S. I., Magazinnik, T., & Rice, J. C. (2006). A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. Journal of Biological Chemistry, 281(18), 12760–12766. https://doi.org/10.1074/jbc.M513462200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free