Analysis of nuclear maturation, DNA damage and repair gene expression of bovine oocyte and cumulus cells submitted to ionizing radiation

1Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

Abstract

Radiotherapy causes destruction of tumor cells, but also threatens the integrity and survival of surrounding normal cells. Then, woman submitted to irradiation for cancer treatment may present permanent ovary damage, resulting in impaired fertility. The objective of this study was to investigate the effects of therapeutic doses of ionizing radiation (IR), used for ovarian cancer treatment in humans, on bovine cumulus-oocyte complexes (COCs) as experimental model. Bovine ovaries were exposed to 0.9 Gy, 1.8 Gy, 3.6 Gy or 18.6 Gy IR, and then COCs were collected and used to evaluate: (a) oocyte nuclear maturation; (b) presence of phosphorylated H2A.X (γH2AX), as an indicator of DNA double-strand breaks (DSBs); and (c) expression of genes involved in DNA repair (TP53BP1, RAD52, ATM, XRCC6 and XRCC5) and apoptosis (BAX). The radiation doses tested in this study had no detrimental effects on nuclear maturation and did not increase γH2AX in the oocytes. However, IR treatment altered the mRNA abundance of RAD52 (RAD52 homolog, DNA repair protein) and BAX (BCL2-associated X protein). We conclude that although IR doses had no apparent effect on oocyte nuclear maturation and DNA damage, molecular pathways involved in DNA repair and apoptosis were affected by IR exposure in cumulus cells.

Cite

CITATION STYLE

APA

Rovani, B. T., Rissi, V. B., Rovani, M. T., Gasperin, B. G., Baumhardt, T., Bordignon, V., … Gonçalves, P. B. D. (2023). Analysis of nuclear maturation, DNA damage and repair gene expression of bovine oocyte and cumulus cells submitted to ionizing radiation. Animal Reproduction, 20(2). https://doi.org/10.1590/1984-3143-AR2023-0021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free