Homeostatic enhancement of sensory transduction

17Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells’ ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle’s displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell’s behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here.

Cite

CITATION STYLE

APA

Milewski, A. R., Maoiléidigh, D., Salvi, J. D., & Hudspeth, A. J. (2017). Homeostatic enhancement of sensory transduction. Proceedings of the National Academy of Sciences of the United States of America, 114(33), E6794–E6803. https://doi.org/10.1073/pnas.1706242114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free