The adoption of intelligent systems with Artificial Neural Networks (ANNs) embedded in hardware for real-time applications currently faces a growing demand in fields such as the Internet of Things (IoT) and Machine to Machine (M2M). However, the application of ANNs in this type of system poses a significant challenge due to the high computational power required to process its basic operations. This paper aims to show an implementation strategy of a Multilayer Perceptron (MLP)-type neural network, in a microcontroller (a low-cost, low-power platform). A modular matrix-based MLP with the full classification process was implemented as was the backpropagation training in the microcontroller. The testing and validation were performed through Hardware-In-the-Loop (HIL) of the Mean Squared Error (MSE) of the training process, classification results, and the processing time of each implementation module. The results revealed a linear relationship between the values of the hyperparameters and the processing time required for classification, also the processing time concurs with the required time for many applications in the fields mentioned above. These findings show that this implementation strategy and this platform can be applied successfully in real-time applications that require the capabilities of ANNs.
CITATION STYLE
Guimarães, C. J. B. V., & Fernandes, M. A. C. (2020). Real-time neural networks implementation proposal for microcontrollers. Electronics (Switzerland), 9(10), 1–20. https://doi.org/10.3390/electronics9101597
Mendeley helps you to discover research relevant for your work.