The first observations conducted as part of the Chandra ACIS survey of M33 (ChASeM33) sampled the eclipsing X-ray binary M33 X-7 over a large part of the 3.45 day orbital period and have resolved eclipse ingress and egress for the first time. The occurrence of the X-ray eclipse allows us to determine an improved ephemeris of mid-eclipse and binary period as HJD (2,453,639.119+/-0.005)+/-N(3.453014+/-0.000020) and constrain the eclipse half-angle to 26.5d+/-1.1d. There are indications for a shortening of the orbital period. The X-ray spectrum is best described by a disk blackbody spectrum typical for black hole X-ray binaries in the Galaxy. We find a flat power density spectrum, and no significant regular pulsations were found in the frequency range of 10-4 to 0.15 Hz. HST WFPC2 images resolve the optical counterpart, which can be identified as an O6 III star with the help of extinction and color corrections derived from the X-ray absorption. Based on the optical light curve, the mass of the compact object in the system most likely exceeds 9 Msolar. This mass, the shape of the X-ray spectrum, and the short-term X-ray time variability identify M33 X-7 as the first eclipsing black hole high-mass X-ray binary.
CITATION STYLE
Pietsch, W., Haberl, F., Sasaki, M., Gaetz, T. J., Plucinsky, P. P., Ghavamian, P., … Pannuti, T. G. (2006). M33 X‐7: ChASeM33 Reveals the First Eclipsing Black Hole X‐Ray Binary. The Astrophysical Journal, 646(1), 420–428. https://doi.org/10.1086/504704
Mendeley helps you to discover research relevant for your work.