A 26-GHz transmitter front-end using double quadrature architecture

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

A 26-GHz transmitter front-end is designed using 65 nm CMOS technology. The double frequency conversion transmitter consists of an intermediate frequency(IF) mixer, an millimeter-wave(mm-wave) mixer, and a pre-power amplifier. A double quadrature architecture is employed to accomplish image rejection without using an image rejection filter for the first time in the mm-wave frequency band. The IF mixer cores are designed as harmonic rejection mixers to avoid using IF filters. The measured conversion gain is 26.85±0.65 dB, with LO2 (IF LO) at 1–1.5 GHz and 26.9±0.6 dB with LO1 (mm-wave LO) at 27–29 GHz. The measured output return loss is less than -10 dB at 25.7–27.2 GHz. The output 1-dB compression point and the saturation output power measured at 26 GHz are 10 dBm and 14.1 dBm, respectively. The output-referred third-order intercept point (OIP3) measured at 26 GHz is 15.76 dBm. The third-order distortion, suppressed by the harmonic rejection mixer, is -60.5 dBc at an output power of 10 dBm. The error vector magnitude measured for OFDM 16-QAM with a 110-MHz signal bandwidth is -17.7 dB at an average output power of 3.5 dBm. The total power consumption of the proposed 26-GHz transmitter front-end is 267 mW, and it occupies a chip area of 2.31 mm2

Cite

CITATION STYLE

APA

Lee, H. S., Park, M., & Min, B. W. (2019). A 26-GHz transmitter front-end using double quadrature architecture. PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0216474

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free