The inositol-polyphosphate 5-phosphatase enzyme family removes the 5-position phosphate from both inositol phosphate and phosphoinositide signaling molecules. We have cloned and characterized a novel 5-phosphatase, which demonstrates a restricted substrate specificity and tissue expression. The 3.9-kb cDNA predicts for a 72-kDa protein with an N-terminal proline rich domain, a central 5-phosphatase domain, and a C-terminal CAAX motif. The 3.9-kilobase mRNA showed a restricted expression but was abundant in testis and brain. Antibodies against the sequence detected a 72-kDa protein in the testis in the detergent-insoluble fraction. Indirect immunofluorescence of the Tera-1 cell line using anti-peptide antibodies to the 72-kDa 5-phosphatase demonstrated that the enzyme is predominantly located to the Golgi. Expression of green fluorescent protein-tagged 72-kDa 5-phosphatase in COS-7 cells revealed that the enzyme localized predominantly to the Golgi, mediated by the N-terminal proline-rich domain, but not the C-terminal CAAX motif. In vitro, the protein inserted into microsomal membranes on the cytoplasmic face of the membrane. Immunoprecipitated recombinant 72-kDa 5-phosphatase hydrolyzed phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,5-bisphosphate, forming phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3-phosphate, respectively. We propose that the novel 5-phosphatase hydrolyzes phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,5-bisphosphate on the cytoplasmic Golgi membrane and thereby may regulate Golgi-vesicular trafficking.
CITATION STYLE
Kong, A. M., Speed, C. J., O’Malley, C. J., Layton, M. J., Meehan, T., Loveland, K. L., … Mitchell, C. A. (2000). Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. Journal of Biological Chemistry, 275(31), 24052–24064. https://doi.org/10.1074/jbc.M000874200
Mendeley helps you to discover research relevant for your work.