LED-based photoacoustic imaging has practical value in that it is affordable and rugged; however, this technology has largely been confined to anatomic imaging with limited applications into functional or molecular imaging. Here, we report molecular imaging reactive oxygen and nitrogen species (RONS) with a near-infrared (NIR) absorbing small molecule (CyBA) and LED-based photoacoustic imaging equipment. CyBA produces increasing photoacoustic signal in response to peroxynitrite (ONOO−) and hydrogen peroxide (H2O2) with photoacoustic signal increases of 3.54 and 4.23-fold at 50 µM of RONS at 700 nm, respectively. CyBA is insensitive to OCl−, ˙NO, NO2−, NO3−, tBuOOH, O2−, C4H9O˙, HNO, and ˙OH, but can detect ONOO− in whole blood and plasma. CyBA was then used to detect endogenous RONS in macrophage RAW 246.7 cells as well as a rodent model; these results were confirmed with fluorescence microscopy. Importantly, CyB suffers photobleaching under a Nd:YAG laser but the signal decrease is <2% with the low-power LED-based photoacoustic system and the same radiant exposure time. To the best of our knowledge, this is the first report to describe molecular imaging with an LED-based photoacoustic scanner. This study not only reveals the sensitive photoacoustic detection of RONS but also highlights the utility of LED-based photoacoustic imaging.
CITATION STYLE
Hariri, A., Zhao, E., Jeevarathinam, A. S., Lemaster, J., Zhang, J., & Jokerst, J. V. (2019). Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47599-2
Mendeley helps you to discover research relevant for your work.