Physical models are a key component in the architectural process and play an important role in understanding material and space relationships. We present Tangible Urban Models, an approach for leveraging the use of conductive material for 3D printed architectural prototypes. This enables non-interactive objects, such as buildings, to become tangible without the need to attach additional components. We combine this capability with an augmented reality (AR) app and explore the use of gestures for interacting with digital and physical content. The multi-material 3D printed buildings consist of thin layers of white plastic filament and a conductive wireframe to enable touch gestures. In this way, we enable a two-way interaction either with the physical model or with the mobile AR interface.
CITATION STYLE
Narazani, M., Eghtebas, C., Jenney, S. L., & Mühlhaus, M. (2019). Demo: Tangible urban models. In UbiComp/ISWC 2019- - Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (pp. 320–323). Association for Computing Machinery, Inc. https://doi.org/10.1145/3341162.3343810
Mendeley helps you to discover research relevant for your work.