Aim: Obsessive–compulsive disorder (OCD) is a disorder characterized by the presence of obsessions and/or compulsions. Although disorder etiology and pathogenesis remains unknown, several theories about OCD development have been proposed, and many researchers believe that it is caused by both genetic and environmental factors. In the current study, our aim was to investigate miRNA levels in OCD. Methods: In the current study, we evaluated miR18a-5p, miR22-3p, miR24-3p, miR106b-5p, miR107, miR125b-5p, and miR155a-5p levels in child and adolescent OCD patients. The research sample consisted of a group of 23 OCD patients and 40 healthy volunteer controls. Results: There was no significant difference in age and sex between the two groups (P>0.05).The levels of miR22-3p, miR24-3p, miR106b-5p, miR125b-5p, and miR155a-5p were significantly increased in the OCD subjects (P≤0.05). There were no statistically significant differences in miR18a-5p or miR107 levels between groups (P≥0.05). Conclusion: There could be a close relationship between levels of circulating miRNAs and OCD. If we could understand how the signaling pathways arranged by miRNAs impact on central nervous system development, function, and pathology, this understanding could improve our knowledge about OCD etiology and treatment.
CITATION STYLE
Kandemir, H., Erdal, M. E., Selek, S., Ay, Ö. İ., Karababa, İ. F., Ay, M. E., … Bayazit, H. (2015). Microribonucleic acid dysregulations in children and adolescents with obsessive–compulsive disorder. Neuropsychiatric Disease and Treatment, 11, 1695–16701. https://doi.org/10.2147/NDT.S81884
Mendeley helps you to discover research relevant for your work.