Interleukin 3 (IL-3) is a hematopoietic stem-cell growth and differentiation factor that is expressed solely in activated T and NK cells. Studies to date have identified elements 5′ to the IL-3 coding sequences that regulate its transcription, but the sequences that confer T cell-specific expression remain to be clearly defined. We have now identified DNA sequences that are required for T cell-restricted IL-3 gene transcription. A series of transient transfections performed with human IL-3-chloremphenicol acetyltransferase (CAT) reporter plasmids in T and non-T cells revealed that a plasmid containing 319 bp of 5′ flanking sequences was active exclusively in T cells. Deletion analysis revealed that T cell specificity was conferred by a 49-bp fragment (bp -319 to -270) that included a potential binding site for AP-1 transcription factors 6 bp upstream of a binding site for Elf-1, a member of the Ets family of transcription factors. DNaseI footprint and electrophoretic mobility shift assay analyses performed with MLA-144 T cell nuclear extracts demonstrated that this 49-bp region contains a nuclear protein binding region that includes consensus AP-1 and Elf-1 binding sites. In addition, extracts prepared from purified human T cells contained proteins that bound to synthetic oligonucleotides corresponding to the AP-1 and Elf-1 binding sites. In vitro-transcribed and -translated Elf-1 protein bound specifically to the Elf-1 site, and Elf-1 antisera competed and super shifted nuclear protein complexes present in MLA-144 nuclear extracts. Moreover, addition of anti-Jun family antiserum in electrophoretic mobility shift assay reactions completely blocked formation of the AP-1-related complexes. Transient transfection studies in MLA-144 T cells revealed that constructs containing mutations in the AP-1 site almost completely abolished CAT activity while mutation of the Elf-1 site or the NF-IL-3 site, a previously described nuclear protein binding site (bp -155 to -148) in the IL-3 promoter, reduced CAT activity to <25% of the activity given by wild-type constructs. We conclude that expression of the human IL-3 gene requires the AP-1 and Elf-1 binding sites; however, unlike other previously characterized cytokine genes such as IL-2, the AP-1 and Elf-1 factors can bind independently in the IL-3 gene. Thus, the exact DNA composition of these sites, flanking DNA sequences, and the distance between the AP-1 and Ets family binding sites determine the fine specificity of nuclear factors that bind to these sites and the resulting inducible, cell-restricted expression of a group of lymphokine genes.
CITATION STYLE
Gottschalk, L. R., Giannola, D. M., & Emerson, S. G. (1993). Molecular regulation of the human IL-3 gene: Inducible T cell-restricted expression requires intact AP-1 and Elf-1 nuclear protein binding sites. Journal of Experimental Medicine, 178(5), 1681–1692. https://doi.org/10.1084/jem.178.5.1681
Mendeley helps you to discover research relevant for your work.