We propose the implementation of transfer learning from natural images to audio-based images using self-supervised learning schemes. Through self-supervised learning, convolutional neural networks (CNNs) can learn the general representation of natural images without labels. In this study, a convolutional neural network was pre-trained with natural images (ImageNet) via self-supervised learning, subsequently, it was fine-tuned on the target audio samples. Pre-training with the self-supervised learning scheme significantly improved the sound classification performance when validated on the following benchmarks: ESC-50, UrbanSound8k, and GTZAN. The network pre-trained via self-supervised learning achieved a similar level of accuracy as those pre-trained using a supervised method that require labels. Therefore, we demonstrated that transfer learning from natural images contributes to improvements in audio-related tasks, and self-supervised learning with natural images is adequate for pre-training scheme in terms of simplicity and effectiveness.
CITATION STYLE
Shin, S., Kim, J., Yu, Y., Lee, S., & Lee, K. (2021). Self-supervised transfer learning from natural images for sound classification. Applied Sciences (Switzerland), 11(7). https://doi.org/10.3390/app11073043
Mendeley helps you to discover research relevant for your work.