Rapid urbanization in recent decades highlights the limitations on the sustainable development of cities due to the fragmentation of restricted urban green land. The aim of this paper is to formulate a workable framework for planning and managing urban green infrastructure (UGI) for urban sustainability. This study provides a new method for modeling and analyzing UGI based on a case study of the Pukou District in Nanjing, which is a typical developing area in China. We adopt the morphological spatial pattern analysis (MSPA) method and combine it with the landscape connectivity index to identify the UGI hubs and links. In addition, the least-cost path model is employed to construct the potential UGI network in this case. We further integrate the spatial syntax model into landscape ecological principles to evaluate the spatial priority of the UGI network. The results showed that the framework proposed in this study is suitable for the green infrastructure network construction by combining the MSPA, landscape connectivity, and the space syntax methods. This framework can be used to better understand the spatial distribution and priority of the green infrastructure network for achieving urban sustainability in China.
CITATION STYLE
Wei, J., Qian, J., Tao, Y., Hu, F., & Ou, W. (2018). Evaluating spatial priority of urban green infrastructure for urban sustainability in areas of rapid urbanization: A case study of Pukou in China. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020327
Mendeley helps you to discover research relevant for your work.