System-Level Simulation for Integrated Phase-Change Photonics

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Conventional computing systems are limited in performance by the well-known von Neumann bottleneck, arising from the physical separation of processor and memory units. The use of electrical signals in such systems also limits computing speeds and introduces significant energy losses. There is thus a pressing need for unconventional computing approaches, ones that can exploit the high bandwidths/speeds and low losses intrinsic to photonics. A promising platform for such a purpose is that offered by integrated phase-change photonics. Here, chalcogenide phase-change materials are incorporated into standard integrated photonics devices to deliver wide-ranging computational functionality, including non-volatile memory and fast, low-energy arithmetic and neuromorphic processing. We report the development of a compact behavioral model for integrated phase-change photonic devices, one which is fast enough to allow system level simulations to be run in a reasonable timescale with basic computing resources, while also being accurate enough to capture the key operating characteristics of real devices. Moreover, our model is readily incorporated with commercially available simulation software for photonic integrated circuits, thereby enabling the design, simulation and optimization of large-scale phase-change photonics systems. We demonstrate such capabilities by exploring the optimization and simulation of the operating characteristics of two important phase-change photonic systems recently reported, namely a spiking neural network system and a matrix-vector photonic crossbar array (photonic tensor core). Results show that use of our behavioral model can significantly facilitate the design and optimization at the system level, as well as expediting exploration of the capabilities of novel phase-change computing architectures.

References Powered by Scopus

Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions

2649Citations
N/AReaders
Get full text

Memory devices and applications for in-memory computing

1385Citations
N/AReaders
Get full text

Photonics for artificial intelligence and neuromorphic computing

1186Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Rigorous dynamic model of a silicon ring resonator with phase change material for a neuromorphic node

10Citations
N/AReaders
Get full text

An All-MRR-Based Photonic Spiking Neural Network for Spike Sequence Learning

10Citations
N/AReaders
Get full text

Toward Accurate Thermal Modeling of Phase Change Material-Based Photonic Devices

9Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Carrillo, S. G. C., Lugnan, A., Gemo, E., Bienstman, P., Pernice, W. H. P., Bhaskaran, H., & Wright, C. D. (2021). System-Level Simulation for Integrated Phase-Change Photonics. Journal of Lightwave Technology, 39(20), 6392–6402. https://doi.org/10.1109/JLT.2021.3099914

Readers over time

‘21‘22‘23‘24‘2502468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

50%

Professor / Associate Prof. 1

17%

Lecturer / Post doc 1

17%

Researcher 1

17%

Readers' Discipline

Tooltip

Engineering 5

56%

Physics and Astronomy 2

22%

Linguistics 2

22%

Save time finding and organizing research with Mendeley

Sign up for free
0