Polo-like kinase-1 (Plk1) is essential for progression of mitosis and localizes to centrosomes, central spindles, midbody, and kinetochore. Ran, a small GTPase of the Ras superfamily, plays a role in microtubule dynamics and chromosome segregation during mitosis. Although Ran-binding protein-1 (RanBP1) has been reported as a regulator of RanGTPase for its mitotic functions, the action mechanism between Ran and RanBP1 during mitosis is still unknown. Here, we demonstrated in vitro and in vivo phosphorylation of RanBP1 by Plk1 as well as the importance of phosphorylation of RanBP1 in the interaction between Plk1 and Ran during early mitosis. Both phosphorylation-defective and N-terminal deletion mutant constructs of RanBP1 disrupted the interaction with Ran, and depletion of Plk1 also disrupted the formation of a complex between Ran and RanBP1. In addition, the results from both ectopic expression of phosphorylation-defective mutant construct and a functional complementation on RanBP1 deficiency with this mutant indicated that phosphorylation of RanBP1 by Plk1 might be crucial to microtubule nucleation and spindle assembly during mitosis. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Hwang, H. I., Ji, J. H., & Jang, Y. J. (2011). Phosphorylation of ran-binding protein-1 by polo-like kinase-1 is required for interaction with ran and early mitotic progression. Journal of Biological Chemistry, 286(38), 33012–33020. https://doi.org/10.1074/jbc.M111.255620
Mendeley helps you to discover research relevant for your work.