Estimating mass concentration using a low-cost portable particle counter based on full-year observations: Issues to obtain reliable atmospheric PM2.5 data

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Expanding the use of a recently introduced low-cost particle monitor (DC1700 Dylos Air Quality Monitor) for sensing atmospheric PM2.5 requires comparison with data obtained using a certified method for PM2.5 based on appropriate atmospheric observations. Full-year measurements of atmospheric aerosols were taken in Nagoya, Japan during March 2017-March 2018 using the DC1700 to measure the particle number concentrations of >0.5 and >2.5 μm diameter particles and to measure the PM2.5 mass concentration (Mdry, PM2.5) using an automated β attenuation mass monitor (PM712). The number-size distribution was measured using an optical particle counter (KC01D). The dried mass concentration of 0.5-2.5 μm particles (Mdry, 0.5-2.5) was estimated from the ambient relative humidity and the DC1700 number concentration. The values of Mdry, 0.5-2.5 were invariably less than those of Mdry, PM2.5. The coefficient of determination and slope of Mdry, 0.5-2.5 to Mdry, PM2.5 for the year were, respectively, 0.68 and 0.40. Slope values changed seasonally from 0.24 in July and August 2017 to 0.55 in May and April 2017. Light absorbing particles, smaller-fine particles, and the estimation method of Mdry, 0.5-2.5 were inferred as causes of the difference between Mdry, 0.5-2.5 and Mdry, PM2.5. Especially, we estimated a large contribution (ca. 54% underestimation of Mdry, 0.5-2.5 into Mdry, PM2.5) of particles smaller than the minimum detection diameter of DC1700. The seasonal variation of Mdry, 0.5-2.5/Mdry, PM2.5 was related to the volume fraction of particles smaller than 0.5 μm. Good correlation of Mdry, 0.5-2.5 to Mdry, PM2.5 suggests that data obtained using DC1700 with a correction factor are useful as a rough proxy of atmospheric PM2.5 within a season. However, precise estimation of PM2.5 from the DC1700 number concentrations should include appropriate corrections of the size distribution, not only hygroscopicity.

Cite

CITATION STYLE

APA

Ueda, S., Osada, K., Yamagami, M., Ikemori, F., & Hisatsune, K. (2020). Estimating mass concentration using a low-cost portable particle counter based on full-year observations: Issues to obtain reliable atmospheric PM2.5 data. Asian Journal of Atmospheric Environment, 14(2), 155–169. https://doi.org/10.5572/ajae.2020.14.2.155

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free