A Stoichiometric Solvent-Free Protocol for Acetylation Reactions

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Considering the remarkable relevance of acetylated derivatives of phenols, alcohols, and aryl and alkyl thiols in different areas of biology, as well as in synthetic organic chemistry, a sustainable solvent-free approach to perform acetylation reactions is proposed here. Acetylation reactions are classically performed using excess of acetic anhydride (Ac2O) in solvent-free conditions or by eventually working with stoichiometric amounts of Ac2O in organic solvents; both methods require the addition of basic or acid catalysts to promote the esterification. Therefore, they usually lead to the generation of high amounts of wastes, which sensibly raise the E-factor of the process. With the aim to develop a more sustainable system, a solvent-free, stoichiometric acetylation protocol is, thus, proposed. The naturally occurring phenol, thymol, can be converted to the corresponding—biologically active—ester with good yields, in the presence of 1% of VOSO4. Interestingly, the process can be efficiently adopted to synthesize other thymyl esters, as well as to perform acetylation of alcohols and aryl and alkyl thiols. Remarkably, a further improvement has been achieved replacing Ac2O with its greener alternative, isopropenyl acetate (IPA).

Cite

CITATION STYLE

APA

Valentini, F., Galloni, P., Brancadoro, D., Conte, V., & Sabuzi, F. (2022). A Stoichiometric Solvent-Free Protocol for Acetylation Reactions. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.842190

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free