By introducing a flux-controlled memristor model with absolute value function, a 5D multistable four-wing memristive hyperchaotic system (FWMHS) with linear equilibrium points is proposed in this paper. The dynamic characteristics of the system are studied in terms of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits, and spectral entropy. This system is of the group of systems that have coexisting attractors. In addition, the circuit implementation scheme is also proposed. Then, a secure communication scheme based on the proposed 5D multistable FWMHS with disturbance inputs is designed. Based on parametric modulation theory and Lyapunov stability theory, synchronization and secure communication between the transmitter and receiver are realized and two message signals are recovered by a convenient robust high-order sliding mode adaptive controller. Through the proposed adaptive controller, the unknown parameters can be identified accurately, the gain of the receiver system can be adjusted continuously, and the disturbance inputs of the transmitter and receiver can be suppressed effectively. Thereafter, the convergence of the proposed scheme is proven by means of an appropriate Lyapunov functional and the effectiveness of the theoretical results is testified via numerical simulations.
CITATION STYLE
Yu, F., Zhang, Z., Liu, L., Shen, H., Huang, Y., Shi, C., … Xu, Q. (2020). Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity, 2020. https://doi.org/10.1155/2020/5859273
Mendeley helps you to discover research relevant for your work.