This study presents an approach that integrates remote sensing evapotranspiration into multi-objective calibration (i.e., runoff and evapotranspiration) of a fully distributed hydrological model, namely a distributed hydrology-soil-vegetation model (DHSVM). Because of the lack of a calibration module in the DHSVM, a multi-objective calibration module using ε-dominance non-dominated sorted genetic algorithm II (ε-NSGAII) and based on parallel computing of a Linux cluster for the DHSVM (εP-DHSVM) is developed. The module with DHSVM is applied to a humid river basin located in the mid-west of Zhejiang Province, east China. The results show that runoff is simulated well in single objective calibration, whereas evapotranspiration is not. By considering more variables in multi-objective calibration, DHSVM provides more reasonable simulation for both runoff (NS: 0.74% and PBIAS: 10.5%) and evapotranspiration (NS: 0.76% and PBIAS: 8.6%) and great reduction of equifinality, which illustrates the effect of remote sensing evapotranspiration integration in the calibration of hydrological models.
CITATION STYLE
Pan, S., Liu, L., Bai, Z., & Xu, Y. P. (2018). Integration of remote sensing evapotranspiration into multi-objective calibration of distributed hydrology-soil-vegetation model (DHSVM) in a humid region of China. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121841
Mendeley helps you to discover research relevant for your work.