In this work, the best size for late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) images in the training dataset was determined to optimize deep learning training outcomes. Non-extra pixel and extra pixel interpolation algorithms were used to determine the new size of the LGE-MRI images. A novel strategy was introduced to handle interpolation masks and remove extra class labels in interpolated ground truth (GT) segmentation masks. The expectation maximization, weighted intensity, a priori information (EWA) algorithm was used for the quantification of myocardial infarction (MI) in automatically segmented LGE-MRI images. Arbitrary threshold, comparison of the sums, and sums of differences are methods used to estimate the relationship between semi-automatic or manual and fully automated quantification of myocardial infarction (MI) results. The relationship between semi-automatic and fully automated quantification of MI results was found to be closer in the case of bigger LGE MRI images (55.5% closer to manual results) than in the case of smaller LGE MRI images (22.2% closer to manual results).
CITATION STYLE
Rukundo, O. (2023). Effects of Image Size on Deep Learning. Electronics (Switzerland), 12(4). https://doi.org/10.3390/electronics12040985
Mendeley helps you to discover research relevant for your work.