Tensor Product Approach to Quantum Control

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this proof-of-concept paper we show that tensor product approach is efficient for control of large quantum systems, such as Heisenberg spin wires, which are essential for emerging quantum computing technologies. We compute optimal control sequences using GRAPE method, applying the recently developed tAMEn algorithm to calculate evolution of quantum states represented in the tensor train format to reduce storage. Using tensor product algorithms we can overcome the curse of dimensionality and compute the optimal control pulse for a 41 spin system on a single workstation with fully controlled accuracy and huge savings of computational time and memory. The use of tensor product algorithms opens new approaches for development of quantum computers with 50-100 qubits.

Cite

CITATION STYLE

APA

Quiñones-Valles, D., Dolgov, S., & Savostyanov, D. (2019). Tensor Product Approach to Quantum Control. In Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations (pp. 367–379). Springer International Publishing. https://doi.org/10.1007/978-3-030-16077-7_29

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free