Accumulating evidences showed metformin and berberine, well-known glucose-lowering agents, were able to inhibit mitochondrial electron transport chain at complex I. In this study, we aimed to explore the antihyperglycaemic effect of complex I inhibition. Rotenone, amobarbital and gene silence of NDUFA13 were used to inhibit complex I. Intraperitoneal glucose tolerance test and insulin tolerance test were performed in db/db mice. Lactate release and glucose consumption were measured to investigate glucose metabolism in HepG2 hepatocytes and C2C12 myotubes. Glucose output was measured in primary hepatocytes. Compound C and adenoviruses expressing dominant negative AMP-activated protein kinase (AMPK) α1/2 were exploited to inactivate AMPK pathway. Cellular NAD+/NADH ratio was assayed to evaluate energy transforming and redox state. Rotenone ameliorated hyperglycaemia and insulin resistance in db/db mice. It induced glucose consumption and glycolysis and reduced hepatic glucose output. Rotenone also activated AMPK. Furthermore, it remained effective with AMPK inactivation. The enhanced glycolysis and repressed gluconeogenesis correlated with a reduction in cellular NAD+/NADH ratio, which resulted from complex I suppression. Amobarbital, another representative complex I inhibitor, stimulated glucose consumption and decreased hepatic glucose output in vitro, too. Similar changes were observed while expression of NDUFA13, a subunit of complex I, was knocked down with gene silencing. These findings reveal mitochondrial complex I emerges as a key drug target for diabetes treatment. Inhibition of complex I improves glucose homoeostasis via non-AMPK pathway, which may relate to the suppression of the cellular NAD+/NADH ratio.
CITATION STYLE
Hou, W. L., Yin, J., Alimujiang, M., Yu, X. Y., Ai, L. G., Bao, Y. Q., … Jia, W. P. (2018). Inhibition of mitochondrial complex I improves glucose metabolism independently of AMPK activation. Journal of Cellular and Molecular Medicine, 22(2), 1316–1328. https://doi.org/10.1111/jcmm.13432
Mendeley helps you to discover research relevant for your work.