M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway

166Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: Reperfusion may cause injuries to the myocardium in ischemia situation. Emerging studies suggest that exosomes may serve as key mediators in myocardial ischemia/reperfusion (MI/R) injury. Objective: The study was conducted to figure out the mechanism of M2 macrophage-derived exosomes (M2-exos) in MI/R injury with the involvement of microRNA-148a (miR-148a). Methods and results: M2 macrophages were prepared and M2-exos were collected and identified. Neonatal rat cardiomyocytes (NCMs) were extracted for in vitro hypoxia/reoxygenation (H/R) model establishment, while rat cardiac tissues were separated for in vivo MI/R model establishment. Differentially expressed miRNAs in NCMs and H/R-treated NCMs after M2-exos treatment were evaluated using microarray analysis. The target relation between miR-148a and thioredoxin-interacting protein (TXNIP) was identified using dual luciferase reporter gene assay. Gain- and loss- of function studies of miR-148a and TXNIP were performed to figure out their roles in MI/R injury. Meanwhile, the activation of the TLR4/NF-κB/NLRP3 inflammasome signaling pathway and pyroptosis of NCMs were evaluated. M2 macrophages carried miR-148a into NCMs. Over-expression of miR-148a enhanced viability of H/R-treated NCMs, reduced infarct size in vivo, and alleviated dysregulation of cardiac enzymes and Ca2+ overload in both models. miR-148a directly bound to the 3′-untranslated region (3’UTR) of TXNIP. Over-expressed TXNIP triggered the TLR4/NF-κB/NLRP3 signaling pathway activation and induced cell pyroptosis of NCMs, and the results were reproduced in in vivo studies. Conclusion: This study demonstrated that M2-exos could carry miR-148a to mitigate MI/R injury via down-regulating TXNIP and inactivating the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. This study may offer new insights into MI/R injury treatment.

Cite

CITATION STYLE

APA

Dai, Y., Wang, S., Chang, S., Ren, D., Shali, S., Li, C., … Ge, J. (2020). M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. Journal of Molecular and Cellular Cardiology, 142, 65–79. https://doi.org/10.1016/j.yjmcc.2020.02.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free