Teaching high-school students nanoscience and nanotechnology

  • Stavrou D
  • Michailidi E
  • Sgouros G
  • et al.
N/ACitations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Science education research has recognized the potential of NanoScience and nanoTechnology (NST) due to its contribution to scientific literacy of future generations. Scholars have identified nine “Big Ideas” as important enough to teach in order to understand NST issues. Based on these “Big Ideas” a teaching learning sequence for lower secondary students has been developed focused on: Size and Scale, Tools and Instrumentation, Size-Dependent Properties and Science-Technology-Society. The teaching sequence was implemented in a class of 15 students of a lower secondary school (8th grade; aged 14-15). Seven meetings took place; each one lasting about ninety minutes. The course was structured as follows: 1. Introduction. 2. How small is a nanometer? 3. How can we “see” the nanoworld? 4. Size-dependent properties: Change of the surface area to volume ratio. 5. Explaining the behavior of different textiles (ranged from hydrophilic to hydrophobic) when absorbing water drops. 6. Explaining color changes in gold nanoparticles. 7. Risk assessment of nanotechnology. Data have been collected by questionnaires, interviews, students’ worksheets and field notes. The results seem to be encouraging for the teaching of NST issues even in lower levels of education.

Cite

CITATION STYLE

APA

Stavrou, D., Michailidi, E., Sgouros, G., & Dimitriadi, K. (2015). Teaching high-school students nanoscience and nanotechnology. Lumat: International Journal of Math, Science and Technology Education, 3(4), 501–511. https://doi.org/10.31129/lumat.v3i4.1019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free