The classroom environment is of great significance for the health of primary and secondary school students, but a comfortable indoor environment often requires higher energy consumption. This paper presents a multi-objective optimization method based on an artificial neural network (ANN) model, which can help designers efficiently optimize the design of primary and secondary school classrooms in southern China. In this optimization method, first, the optimization objectives and variables are determined according to building characteristics, and the physical model is estab-lished through simulation software (EnergyPlus) to generate the sample space. Second, sensitivity analysis is carried out for each optimization variable, and the physical model is modified according to the results to regenerate the sample space. Third, the ANN model is trained by using the regenerated sample space, and the Pareto optimal solution is generated through the use of the non-dominated sorting genetic algorithm II (NSGA-II). Finally, the effectiveness of the multi-objective optimization method is proven through a typical case of primary and secondary school classrooms in Nanjing, China. The results show that, compared with the benchmark scheme, TES decreased by 810.8 kWh at most, PT increased by 47.8% at most and DI increased by 4.2% at most.
CITATION STYLE
Xu, Y., Yan, C., Qian, H., Sun, L., Wang, G., & Jiang, Y. (2021). A novel optimization method for conventional primary and secondary school classrooms in southern china considering energy demand, thermal comfort and daylighting. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313119
Mendeley helps you to discover research relevant for your work.