A Unified Jet Model of X‐Ray Flashes, X‐Ray–rich Gamma‐Ray Bursts, and Gamma‐Ray Bursts. I. Power‐Law–shaped Universal and Top‐Hat–shaped Variable Opening Angle Jet Models

  • Lamb D
  • Donaghy T
  • Graziani C
123Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

HETE-2 has provided strong evidence that the properties of X-Ray Flashes (XRFs), X-ray-rich GRBs, and GRBs form a continuum, and therefore that these three kinds of bursts are the same phenomenon. A key feature found by HETE-2 is that the density of bursts is roughly constant per logarithmic interval in burst fluence S_E and observed spectral peak energy Ep_obs, and in isotropic-equivalent energy Eiso and rest frame spectral peak energy Epeak. In this paper, we explore a unified jet model of all three kinds of bursts, using population synthesis simulations of the bursts and detailed modeling of the instruments that detect them. We show that both a variable jet opening-angle model in which the emissivity is a constant independent of the angle relative to the jet axis and a universal jet model in which the emissivity is a power-law function of the angle relative to the jet axis can explain the observed properties of GRBs reasonably well. However, if one tries to account for the properties of all three kinds of bursts in a unified picture, the extra degree of freedom available in the variable jet opening-angle model enables it to explain the observations reasonably well while the power-law universal jet model cannot. The variable jet opening-angle model of XRFs, X-ray-rich GRBs, and GRBs implies that the energy Egamma radiated in gamma rays is ~ 100 times less than has been thought, and that most GRBs have very small jet opening angles (~ half a degree). It also implies that there are ~ 10^4 - 10^5 more bursts with very small jet opening angles for every burst that is observable. If this is the case, the rate of GRBs could be comparable to the rate of Type Ic core collapse supernovae.

Cite

CITATION STYLE

APA

Lamb, D. Q., Donaghy, T. Q., & Graziani, C. (2005). A Unified Jet Model of X‐Ray Flashes, X‐Ray–rich Gamma‐Ray Bursts, and Gamma‐Ray Bursts. I. Power‐Law–shaped Universal and Top‐Hat–shaped Variable Opening Angle Jet Models. The Astrophysical Journal, 620(1), 355–378. https://doi.org/10.1086/426099

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free