The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering

32Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Wood-plastic composites (WPCs) made by selective laser sintering (SLS) approach of 3D printing offer many advantages over single polymer materials, such as low cost, sustainability, and better sintering accuracy. However, WPCs made via SLS are too weak to have widespread applications. In order to increase the mechanical properties of WPCs, a novel type of WPCs containing 0, 0.05, 0.1 and 0.15 wt % carbon nanotubes (CNT), 14 wt % wood fibers, 86 wt % polyether sulfone (PES) was manufactured via SLS. The experimental results showed that the addition of small amount of CNTs can significantly increase the mechanical properties of the wood/PES composite material. The tensile strength, bending strength, and elasticity modulus were 76.3%, 227.9%, and 128.7% higher with 0.1 wt % CNTs than those without CNTs. The mechanical properties of specimens first increased and then decreased with the addition of CNTs. The SEM results of the specimens' fracture morphology indicate that the preferable bonding interfaces between wood flour grains and PES grains were achieved by adding CNTs to the composites. There are two reasons why the composites possessed superior mechanical properties: CNTs facilitate the laser sintering process of WPCs due to their thermal conductivities, and CNTs directly reinforce WPCs.

Cite

CITATION STYLE

APA

Zhang, Y., Fang, J., Li, J., Guo, Y., & Wang, Q. (2017). The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering. Polymers, 9(12). https://doi.org/10.3390/polym9120728

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free