Phase contrast MRI (PC-MRI) is an established technique for measuring blood flow velocities in vivo. Although spoiled gradient recalled echo (GRE) PC-MRI is the most widely used pulse sequence today, balanced steady state free precession (SSFP) PC-MRI has been shown to produce accurate velocity estimates with superior SNR efficiency.We propose a referenceless approach to flow imaging that exploits the intrinsic refocusing property of balanced SSFP, and achieves up to a 50% reduction in total scan time. With the echo time set to exactly one half of the sequence repetition time (TE = TR/2), we show that non-flow-related image phase tends to vary smoothly across the field-of-view, and can be estimated from static tissue regions to produce a phase reference for nearby voxels containing flowing blood. This approach produces accurate in vivo one-dimensional velocity estimates in half the scan time compared with conventional balanced SSFP phase-contrast methods. We also demonstrate the feasibility of referenceless time-resolved 3D flow imaging (called "7D" flow) in the carotid bifurcation from just three acquisitions. © 2009 Wiley-Liss, Inc.
CITATION STYLE
Nielsen, J. F., & Nayak, K. S. (2009). Referenceless phase velocity mapping using balanced SSFP. Magnetic Resonance in Medicine, 61(5), 1096–1102. https://doi.org/10.1002/mrm.21884
Mendeley helps you to discover research relevant for your work.